
E

J
a

b

c

a

A
A

K
E
H
R
E
O
M

1

r
n
b
i
m
A
a
i
t

•

•
•

•

0

0
d

Catalysis Today 159 (2011) 55–63

Contents lists available at ScienceDirect

Catalysis Today

journa l homepage: www.e lsev ier .com/ locate /ca t tod

fficient discovery and optimization of complex high-throughput experiments

ames N. Cawsea,b,∗, Gianluca Gazzolaa, Norman Packarda,c

ProtoLife Inc., 57 Post St. #513, San Francisco, CA 94014, USA
Cawse and Effect LLC, 132 Kittredge Rd., Pittsfield, MA 01201, USA
European Center for Living Technology, Calle del Clero 2940, 30124 Venice, Italy

r t i c l e i n f o

rticle history:
vailable online 12 August 2010

eywords:
volutionary design of experiments
igh-throughput

a b s t r a c t

As the pace of experimentation in materials science and catalysis has increased, experimental tactics
and strategies have had to adapt to meet the demands of goals of experimentalists, and the spaces they
explore. This pace has increased from runs/year to runs/day and sometimes to runs/minute in high-
throughput experimentation. Although much of this capacity is used to simply speed up conventional
experimental designs, the leading-edge application is discovery of low-probability, high-value occur-
esponse surface
xperimental space
ptimization
achine learning

rences (hits) by searching extensive, complex experimental spaces. Conventional design of experiments
(DoE) is not capable of dealing with these issues. Instead, more advanced experimental tactics and strate-
gies must be implemented. After introducing the elements that make an experimental campaign complex,
here we present a novel statistical model-based evolutionary experimental strategy and apply it to the
optimization of a family of artificial complex systems. With our experiments, we show that such a strat-
egy may significantly reduce the experimental effort required for finding the optima compared to other

ary s
state-of-the-art evolution

. Introduction

Since the modern era of high-throughput chemistry and mate-
ials science began in the 1990s, experimenters have innovated
ovel experimental designs to attack the new, larger problems that
ecame accessible with large numbers of experiments [1,2]. These

ncluded novelties such as fractal designs [3], “unpeeled” dense
ixture designs [4], edge-sharing [5] and split-plot designs [6].
lthough enthusiasm for the more elaborate of these designs has
bated somewhat as the field has matured [7], problems still appear
n which the experimental space is large and complex. These have
he issues of:

High-dimensional experimental spaces (many system con-
stituents and experimental parameters);
Complex constraints on the independent variables;
Synergies, or beneficial nonlinear interactions between system

constituents;
Unpredictable behavior and the inability to derive experimental
results from basic chemical and physical laws.

∗ Corresponding author at: Cawse and Effect LLC, 132 Kittredge Rd., Pittsfield, MA
1201, USA. Tel.: +1 413 822 5006.

E-mail address: cawse@cawseandeffect.com (J.N. Cawse).

920-5861/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.cattod.2010.05.043
trategies.
© 2010 Elsevier B.V. All rights reserved.

Addressing these complex problems requires a strategic
approach to experimentation. Strategy (the overall approach)
is distinct from tactics (the conduct of an individual experi-
ment). The designs mentioned above can be tactical elements
in the strategic plan, but one-design-at-a-time experimenta-
tion should be considered as obsolete as one-factor-at-a-time
experimentation.

In this paper we first formulate the problem, defining experi-
mental spaces with both qualitative and quantitative variables, and
with a response surface representing experimental measurement.
We then examine both tactical and strategic approaches to the
problem, including experimental space sampling via a genetic algo-
rithm (GA), and we introduce a novel form of evolutionary design of
experiments (Evo-DoE), which combines statistical modeling and
stochastic sampling. We finally illustrate Evo-DoE with a numerical
case study, comparing it with a GA.

1.1. Experimental spaces and experimental response

The size of an experimental space is a fuzzy concept that requires
exact definition for each experimental context. For the definition
of the experimental space, consider all controllable variables (fac-

tors) that could affect an experimental result, both quantitative
(including concentration levels) and qualitative. Each factor is one
dimension of the experimental space. Typically the quantitative
factors are explored for a specific set of levels, so that there are
a finite number of levels for each factor. The number of possible

dx.doi.org/10.1016/j.cattod.2010.05.043
http://www.sciencedirect.com/science/journal/09205861
http://www.elsevier.com/locate/cattod
mailto:cawse@cawseandeffect.com
dx.doi.org/10.1016/j.cattod.2010.05.043
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Table 1
Factors for one-step DPC synthesis (1 × 15 × 15 × 15 × 9 × 4 × 3 × 3 × 3 = 3,280,500
potential experiments).

Factors in typical screening experiment No. of levels

Principal metal catalyst 1
Inorganic co-catalysts 15
Metal ligands 15
Organic co-catalysts 15
Anion 9
Associated cation 4
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0 if xi /= ci

where n is the dimensionality of the space, and xi and ci are the level
of the ith component (factor) in a point x in the space and in the
vector c of optimal levels, respectively. Here the lower-order ridges
Reaction time 3
Reaction temperature 3
Reaction pressure 3

xperiments, or size of the experimental space, is obtained by mul-
iplying the number of levels for each factor, both qualitative and
uantitative. This may be reduced by system constraints (e.g., in
ixture experiments). For each experiment, we assume that an

xperimental response may be measured, thus defining a response
urface over the experimental space.

Experimenters have some flexibility in determining the exper-
mental space, in that they must choose which variables will be
aried in a particular experiment. Out of all possible controllable
ariables, the experimenter may choose to fix some and vary others.
n fact, some potentially controllable variables, such as intermedi-
tes in a complex reaction, may be unknown at the beginning of an
xperimental program. The experimenter’s choice of experimen-
al space may depend on his or her perception of the curvature or
rregularity of the response surface. We will take as an operational
efinition of experimental space, for a given experimental program,
he space of variables the experimenter chooses to explore, i.e., the
actors chosen to vary.

The GE Global Research team determined just such an exper-
mental space in their classic study of the carbonylation of
henol to diphenyl carbonate (DPC) (Table 1) [8]. The immen-
ity of this space and the value of the potential catalyst justified

massive effort exceeding 22,000 experimental runs, subsam-
ling the full experimental space in various non-systematic
ays [9].

In approaching experimentation in these spaces, there are two
ritical questions that must be asked. First, is the space “too large”
or the tools at hand? Is the number of factors, levels, and inter-
ctions too great, and is the response surface too irregular? If so,
he experiment must be pruned using the best chemical knowl-
dge available. Second, if the resources available appear to meet
he challenge, what is the best strategy for attacking the project
t hand? Some of these questions are addressable only with pre-
iminary experimentation, e.g., to gain knowledge of the response
urface.

.2. Experimental response surface topology

One way to help our thinking in this area is to consider some
dealized response surfaces and the consequences of the shapes
f these surfaces. There are two extremes in this area. One is a
urface over a space consisting of multilevel entirely qualitative
actors. The other is a surface over a space with purely quantitative
actors.

.2.1. Qualitative spaces
The ultimate difficulty for a discovery program is the true “nee-
le in the haystack,” illustrated in Fig. 1 as a response surface over
2-dimensional experimental space consisting of two qualitative

actors with many levels each. In such a system, the optimum result
ppears only when all of the factors are at their precisely correct
evels. No experimental design can find this peak more reliably than
Fig. 1. Representation of a needle function where the only real response is at a
single combination (interaction) of two factors, each with a large number of potential
levels.

random search. Mathematically, this system can be represented by
a function

Y =
{

1 + ε if (x = c)
ε if (x /= c)

where x is a point in the space, c is the vector of optimal levels, and
ε a normally distributed random variable with zero mean.

For a rational discovery program of any kind to succeed, there
must be lower-dimensional “ridges” which can be followed to the
optimum (Fig. 2). The equation then can become

Y = 1
n∑

ı(xi) + ε, ı(xi) =
{

1 if xi = ci
Fig. 2. Representation of a needle function that also has lower-dimensional “ridges”.
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ig. 3. (a) The number of runs required for a full factorial design of systems with lar
umber of runs required for D- or I-optimal designs for systems with large numbers

rom test systems using the “Custom Design” feature in JMP.

ive the clues that identify the factors and levels that participate in
he optimum.

We can imagine searching for such optima using full factorial
nd optimal designs. Full factorial designs suffer greatly from the
curse of dimensionality” (Fig. 3(a)). Optimal designs are far more
fficient (Fig. 3(b)), but they require making a reasonably accu-
ate guess as to the level of interactions, and they too will strain
he laboratory resources when the number of factors, levels, and
nteractions gets too high.

Yet another way of considering this problem is to set a rea-
onable budget of runs for an experiment and examine the size
f the spaces that can be examined with different approaches.
his is given for a ∼1000-run budget in Fig. 4. This is divided into
hree classes: systems in which every possible qualitative com-
ination can be tested (“brute force”); those that can be handled
y relatively conventional DoE; and those that can be handled
ith computer-generated optimal designs (D- or I-optimal) which

earch for second-order or higher interactions.

A real problem of the qualitative type is the discovery of

ynergetic drug combinations. In [10], e.g., Lehár et al. describe
screening experiment aimed at discovering 2-way synergetic

ffects in a 90-drug library, for inhibiting the proliferation of

ig. 4. Estimation of the size of experimental space that can be searched with a 1000-
un budget under three scenarios: brute force (full factorial design); conventional
oE (fractional factorial design capable of detecting 2-way interactions); and meth-
ds with ridge detection capability (D- or I-optimal designs capable of detecting
-way interactions).
ber of factors and levels per factor. Calculated from runs = (levels)(̂factors). (b) The
tors and levels, depending on the depth of interactions to be searched. Constructed

HTC116 cancer cells. The response of each of the C(90,2) = 4095
combinations was an aggregate value extracted from a 6 × 6 inhi-
bition matrix of combinations of different amounts of the two
drugs, thus requiring a total of 4095 × 36 = 147,420 measurements.
Now, if we consider the possibility of extending this search to drug
triples, the number of possible qualitative combinations that need
to be tested becomes C(90,3) = 125,580, corresponding to 4,520,880
response measurements. If the experimental effort scales linearly
with the number of combinations examined, then screening for
drug triples would take roughly 30 times as long as screening for
drug pairs. If, e.g., screening pairs took one month of effort, then
screening for triples would take two and a half years of effort. This
would be a daunting task even for the resources of a major phar-
maceutical company. However, there are only 4095 possible 2-way
combinations, and if the “ridge” hypothesis is correct, three of those
could be ridges to a 3-way peak.1 The key to the problem will be
use of a search algorithm that can detect those ridges.

1.2.2. Quantitative spaces
In quantitative systems, the optima will almost always be

regions of some width rather than a single point. In these systems,
the question will be whether the distance between any two points
interrogating the space is on the same scale as the width of the
optimum region, which can be modelled as a Gaussian, described
by the following equation:

Y = exp

((∑
(x − c)

s

)2
)

where c and s are the mean and the standard deviation of the Gaus-
sian, respectively. These types of peaks are shown in 2D and 3D in
Figs. 5 and 6.

We propose a sense of the needed “resolution” of a search design
by considering the volume of that part of the optimum region that
has a response greater than the overall system noise. An estimate of
the necessary resolution is that volume divided by the total space
volume, and an estimate of the number of points needed is the

inverse of that ratio. This could be done, e.g., by taking a “range-
finding” set of points and considering all experimental points that
are 3 standard deviations over the average for the set as candidates
directing the search toward an optimum.

1 If the peak is a 3-way A–B–C interaction, then there are three subsidiary 2-way
interactions: A–B, A–C, and B–C.
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ig. 5. Stochastically perturbed Gaussian peak in a 2-dimensional factor space.

Alternatively, before the experiments begin, we can consider
he ratio of the volume of the anticipated optimum (e.g., calculated
ithin the contour lines connecting the points on the Gaussian that

re 2 standard deviations from its center) to the volume of the entire
pace. This must include consideration of the number of dimensions
n which the optimum is defined.

The real problem is that none of these calculations can be made
ithout making important assumptions about the optimum region.

n a real discovery project, we have little or no information about
hese assumptions. It is still worthwhile to use preliminary experi-

entation to make some rough estimates of the needed resolution.
These ideas can be considered an extension of standard sequen-

ial response surface methodology [11], where detection of an
upward” slope leads to the optimum by steepest ascent methods.
OP Inc., a major catalyst manufacturer, has applied these methods
xtensively in the discovery of new zeolite catalysts, where a new

ptimum is at a narrowly defined apex of compositional and pro-
essing variables. A typical zeolite synthesis study includes factors
uch as oxide source, template, mineralizer, buffer, mixing order,
emperature, temperature ramp, time, and seeding method. A mod-
st estimate of 3–4 levels/factor quickly generates an experimental

ig. 6. Stochastically perturbed Gaussian peak in a 3-dimensional factor space. One
uadrant has been cut out to make the peak structure visible.
day 159 (2011) 55–63

space exceeding 104 runs [12]. After a first space-filling experiment,
a nonlinear multivariate regression was used to locate potential
optima, followed by sampling in those regions with their optimal
coverage algorithm [13].

1.3. Experimental space sampling tactics and strategies

When designing complex systems defined on very large, high-
dimensional spaces, an evolutionary (or “adaptive”), iterative DoE
strategy is usually preferred to a classic DoE tactic. Evolutionary
DoE strategies abandon the idea of analyzing the entire space of
combinations and all relationships between factors in only one
experiment and with only one design. Instead, they iteratively build
new designs as a function of the experimental results collected dur-
ing the exploration. This allows the search to gradually converge on
a limited optimal region of experimental space by drawing on clues
gathered in the initial stages (or “generations”), sampling for obser-
vation only a tiny fraction of all possible points. Choosing the points
of the first generation of an iterative program is a tactical issue that
then feeds into the general strategy, which determines how points
will be chosen in all following generations.

1.3.1. First generation sampling tactics
For sampling quantitative spaces, it is tempting to use a Carte-

sian design, in which all dimensions are divided equally and points
are placed at every intersection. This is very simple to set up, but it
has been shown to be far worse than the mathematically optimal
method for sampling an unknown experimental region, which is a
packing or covering lattice design [14]. This optimality is predicated
on the assumption of an infinite space; for practical experimen-
tal spaces, lattices have fitting problems at the edges. Cartesian
designs will also work in spaces that are composites of quantita-
tive and multilevel qualitative factors. Lattices will not because they
typically define points with non-integer coordinates.

For a real space, it is often preferable to use a stochastic method
for generating a sampling set. As spaces grow more complex, fully
deterministic designs like lattices become increasingly difficult to
generate, because of system constraints and lack of good distance
measures. In short, spaces become more irregular. This does not
bother stochastic methods. There are several flavors of stochastic
methods. A purely random design is by far the easiest to gener-
ate, and has the great advantage of being applicable to all types of
spaces – quantitative, qualitative, and composite. True randomness,
however, is actually somewhat “lumpy” (Abelson’s first law) [15]
– points are surprisingly likely to be clustered, leaving relatively
large unsampled gaps. Weighted random sampling techniques, in
which the probability of a point being sampled is biased toward its
distance from previously tested points, should be preferred [16].

There are several other stochastic sampling methods for quan-
titative factors in the more sophisticated statistics packages such
as JMP [17]. The best of these for chemical experimentation appear
to be:

• Sphere packing, which emphasizes the spread of points;
• Latin Hypercube, which is a compromise between spread of

points and uniform spacing;
• I-optimal, which minimizes the average variance of prediction

over the region of the data.
A comparison of some of these methods is given in Fig. 7, show-
ing the distribution of minimum distances of 250 random points in a
4-dimensional square space divided in 102 units in each dimension
(108 points). The best methods are those with the least represen-
tation on the right hand (large gap) side, with Latin Hypercube the
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ig. 7. Estimates of gap size between experimental points for several stochastic
trategies.

est in this case, closely followed by Sphere Packing.2 Johnson et
l. [18] have shown that Sphere Packing and Latin Hypercubes are
the best choice of designs” for computer simulation experiments
here high-order polynomial designs are likely to be appropriate.

n these situations “responses from computer experiments can be
omplex” and “filling the design region is important because little
s known about what portions of the region will provide the most
nformative and interesting effects”. These are the same properties
ften observed in a complex combinatorial chemistry space, so it is
easonable to suggest that the same designs will be effective.

.3.2. Sampling strategies for subsequent generations
Genetic algorithms are by far the most popular adaptive strategy

mployed for the optimization of physical and chemical systems
19–25]. GAs assign each point in a space a genetic code, and
hen progress from one generation of experiments to the next by
pplying genetic operators analogous to mutation and crossover to
inning solutions. One of the main advantages of GAs in this con-

ext is that they do not make any specific assumption about the
opology of the response surface, which makes them adaptable to
large variety of problems. As the effectiveness of a GA increases
ith increasing population size and number of generations, GAs are
articularly powerful when coupled with high-throughput tech-
ologies, which allow experimenters to quickly create and assess a

arge number of configurations of the system to optimize.
Some authors, however, underline that traditional GAs tend to

enerate new candidate solutions without efficiently leveraging
eneficial interactions between factors, due to the randomness of
heir operators [26]. With this premise, over the last years, a grow-
ng interest has been directed toward new adaptive optimization
trategies that learn the structure of factor interactions from exper-
mental observations, and exploit this information to speed up the
ptimization process. One of these strategies consists in building
tatistical models (often in the form of second-order polynomials)
hat explicitly estimate the relationship between location of points
n the space and experimental response from previously collected
bservations, and use such models to guide or substitute genetic
perators in the selection of new points to observe [27–29]. Another
rea that combines exploitation of structure with random search

s the estimation of distribution algorithms [30], where Bayesian

ethods are the primary tools for detecting structure, with an over-
ay of various techniques, such as clustering and GAs, to cope with
he complexity of multi-factor interactions [31].

2 These results will probably vary with sample size and dimensionality.
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Recent literature on design and optimization of experimental
systems includes a number of reports in which GAs have been
combined with artificial neural networks (ANNs) trained on exper-
imental observations [32]. In some of these, the ANN is trained after
several generations of a GA have identified a promising region. This
is followed by virtual experimentation, e.g., for optimally adjusting
some of GA parameters to the system at hand, using the ANN as
artificial response function [33], or for studying how the efficiency
of the evolutionary strategy could be improved using the ANN as
a response predictor [34]. In other studies, a GA generates a large
number of candidate points; then the ANN, trained on all previous
experimental observations, selects the most promising points for
the next generation of experiments [35]. Our contribution to this
research thread is a new strategy of evolutionary design of exper-
iments (Evo-DoE) that combines prediction of fruitful points from
nonlinear regression models of previous experimental observa-
tions with stochastic exploration of the experimental space based
on weighted random sampling. Thus, the ANN or other nonlinear
model is, on the one hand, intimately embedded in the evolution-
ary process at each generation and, on the other hand, a tool for
point selection which does not rely on a GA. Elsewhere, we report
on the application of this approach to the problem of optimizing the
cargo capacity of a complex liposomal drug formulation [36]. Here,
we describe the Evo-DoE procedure in detail and assess its perfor-
mance on a family of artificial problems. We then benchmark such
performance with that of a standard GA.

2. Materials and methods

2.1. Artificial response surface and experimental space

To compare the performances of Evo-DoE and the GA, we ran
three batches of simulations, in which the two experimental strate-
gies were applied to the problem of optimizing three different
complex artificial response surfaces. In previous work [24], we
partially resolved the topology of the response landscape of a
real high-dimensional mixture amphiphile system. The experimen-
tal data provided evidence of a multi-peaked response surface,
perturbed by several components of experimental noise. This infor-
mation was incorporated here in the artificial response surfaces,
which were designed by superimposing several stochastically per-
turbed Gaussian peaks on a simplex-lattice space [37].

The response Fx of a point x in the q-dimensional simplex-lattice
space was defined as:

Fx = max
k

(G(x)), with G(x) = ak exp

⎛
⎝( q∑

i=1

(xi − cik
)

sk

)2
⎞
⎠

where xi is the level of the ith component (factor) of x; k is the
Gaussian index, varying from 1 to p; cik

, ak and sk are respectively:
the coordinate of the mean ck in the ith dimension, the height at ck,
and the standard deviation of the kth Gaussian. The formula then
calculates the heights of the p Gaussians at x, and the highest of
these is associated to x as response value. A given number l < q of
dimensions are supposed to be “neutral” with respect to one or
more of the p Gaussians, as if in such dimensions the distance of x
from ck were null independently of where x is located. The response
of a combination, with respect to each Gaussian, therefore depends
on the interaction of l variables.

The measured response Fm
x of x is simulated as:
Fm
x = Fx + N(0, rFx) + N(0, t)

The “true” response Fx is then perturbed by two error com-
ponents: one proportional to and one independent from Fx. The
two quantities are sampled from a normal distribution with zero
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Table 2
Coordinates of the mean of each Gaussian contained in the artificial response sur-
faces used in the three experiments (neutral dimensions not shown). In every
surface, one or more relevant factors are shared by more Gaussians (e.g., in exper-
iment 2 factors 1 and 2 are relevant for all three Gaussians). Note that the optimal
level of all relevant factors is always a positive value.

Height (a) Optimal levels

Experiment 1
1 c4 = 10, c5 = 10
3 c1 = 4, c2 = 16
8 c1 = 15, c3 = 5

Experiment 2
1 c1 = 4, c2 = 16
3 c1 = 6, c2 = 5, c6 = 9
8 c1 = 10, c2 = 3, c3 = 3, c4 = 3, c5 = 1

Experiment 3
1 c1 = 1, c2 = 1, c3 = 2, c4 = 2, c5 = 2, c6 = 2, c7 = 2, c8 = 3,

c9 = 2, c10 = 3
3 c8 = 5, c9 = 3, c10 = 2, c11 = 3, c12 = 2, c13 = 1, c14 = 1, c15 = 1,
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2
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(
(

(

(
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c16 = 1, c17 = 1
8 c2 = 4, c9 = 1, c11 = 2, c18 = 3, c19 = 3, c20 = 2, c21 = 2, c22 = 1,

c23 = 1, c24 = 1

ean and standard deviation determined by parameters r and t,
espectively.

The number q of factors in the space was set to 100. In every
iven point of the simplex, each factor can be present in one of
= 20 possible relative amounts (0, 0.05, 0.1, . . ., 1), and the rel-

tive amounts of all factors must sum to 1. This means that up to
0 factors at a time can be present in positive quantities. Because
his is a simplex-lattice space, its cardinality is equal to C(q − 1 + m,
) ≈ 2.46 × 1022.

We considered three different response surfaces defined on
his space, each composed by p = 3 Gaussians with the same stan-
ard deviation (s1 = s2 = s3 = 5) but with different heights (a1 = 1,
2 = 3, a3 = 8), and perturbed with parameters r = t = 0.05. The three
unctions differ from each other for the number of non-“neutral”
ariables, namely for the number of factors on whose interaction
he response of a given point depends. In the first response surface,
nteractions are binaries with respect to each Gaussian; in the sec-
nd, they are binary for the Gaussian with height 1, ternary for the
aussian with height 3 and quinary for the Gaussian with height
; in the third, interactions involve 10 factors for each Gaussian
Table 2).

.2. Evolutionary sampling strategies

.2.1. Evo-DoE
The Evo-DoE process used here started with a tactic consist-

ng of a set of 384 randomly selected points.3 The nth generation
iteration) of the Evo-DoE process consisted of the following steps:

1) Measure the experimental response of the nth set of points;
2) Optimize the metaparameters of the nth model, as described

below;
3) Build a model of the entire response surface from the experi-
mentally measured responses for the first n sets of points;
4) Starting from each of 400 randomly selected points, hill-climb

the modeled response surface, keeping track of all the points
visited that were not tried in the first n generations;

3 The exact number of points is arbitrary and will vary with the experimental cir-
umstances. High-throughput experimentation commonly makes use of 384-well
lates. One such plate would then fit one entire generation of the evolutionary
trategy.
day 159 (2011) 55–63

(5) Randomly choose 336 points from the untried ones found at the
previous step with the top decile of responses predicted by the
model,4 and add those points to the n + 1th set of points;

(6) Add 48 more randomly selected untried points to generate 384
points for the n + 1th set of points.

The initial random sample, and the random samples chosen at
steps 4–6 of every generation, were drawn from a probability dis-
tribution biased toward the unsampled regions of the space, in
order to favor global exploration of the experimental space. Specif-
ically, the probability of a point being sampled was proportional to
the Euclidean distance between that point and the closest already
sampled point. The probability distribution was recomputed after
sampling every point. A previously sampled point could not be
resampled.

The hill-climbing algorithm mentioned at step 4 started with the
prediction, based on the model learned at step 3, of the response
level of all nearest neighbors of the jth initial point, and the follow-
ing selection of the neighbor with the highest predicted response.
This procedure was then iteratively repeated, selecting the pre-
dicted best nearest neighbor of the point selected at the previous
iteration, and so on, and it was stopped when either: (a) all near-
est neighbors had lower predicted response than the point selected
at the previous iteration; (b) the selected point had already been
selected in previous hill-climbing runs starting from any of the first
j − 1 initial points.

The balance between the model-based and random points was
determined in such a way that most of the experimental effort was
aimed at intelligent sampling, and only a small fraction of it at pure
exploration. The specific figures, however, should be considered
arbitrary.

The models used here were feed-forward, single hidden-layer
ANNs [38] (learned with back-propagation using nnet in the R lan-
guage after standardizing all inputs and normalizing the output to
the [0,1] interval), with 100 inputs and 1 output.

Each ANN was constructed with particular metaparameter val-
ues (weight decay constant and number of hidden-layer nodes).
At step 2 of the Evo-DoE cycle, the model’s metaparameters were
selected using a bagging process [39], repeating the model learning
on 20 different data sets, each being a different random sample of
80% of the observed points, and 10 times on each data set. Each con-
figuration of metaparameters was then assigned a quality measure,
calculated as the mean linear correlation between the remaining
20% observations and the corresponding predictions over all the
repeats.

2.2.2. Benchmark genetic algorithm
The genetic algorithm used here is a variation of the one

described in [24]. It started with a tactic consisting of a set of
384 randomly selected points. The nth generation of the genetic
algorithm consisted of the following steps:

(1) Measure the experimental response of the nth set of points;
(2) Choose 168 parent points via tournament selection as described

below;
(3) Generate 1 mutant child from every parent, as described below;
(4) Divide parent points in pairs and generate 2 child points from
every pair by crossover, as explained below;
(5) Add 48 more randomly selected untried points to the n + 1th set

of points.

4 If less than 336 points fall within the top decile, the top 336 points should be
selected.
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Fig. 8. Expected value of mean and maximum response for Evo-DoE (circles) and for the GA (triangles), in experiments 1 (a, b), 2 (c, d), 3 (e, f). Both statistics were calculated
at every generation on all observed points (which also include those observed at the current generation). The time series stop at the generation at which the global optimum
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as found in all replicates. By definition, the maximum response would have rem
o accurately predict what the dynamics of the mean response would have been. Er
maller than the size of the symbols are not shown.

The initial random sample, and the random sample chosen at
tep 5 of every generation, were drawn from a uniform probability
istribution.

Parent points were selected with the so-called “tournament” cri-
erion [40], as follows. Let b the number of already observed points,
the number of parent points to select and e an integer such that
< e < b − d + 2. The tournament criterion requires sampling with-
ut replacement for d times of e of the b points, and the selection
s parents of those with the highest observed response in the d
amples. In the experiments we set d = e = 168.
Mutant child points were generated following this scheme: one
nteger number u was randomly sampled from the values 1, 2, 3, 4,
, with probability 5/15, 4/15, 3/15, 2/15, and 1/15 respectively;
genes (factors) were sampled with replacement among those

resent in positive quantity; from those factors, the u previously
the same if the simulations were run further (dotted line), while it is not possible
rs show 95% confidence intervals, estimated on 10 replicates. Confidence intervals

sampled units were removed and added to u other factors, sam-
pled with replacement among the remaining ones. Any mutant
point coincident with a previously sampled point was discarded
and regenerated.

Parent points were coupled following the order in which they
were sampled (the first with the second, the third with the fourth,
etc.), and each couple generated 2 crossed child points following
this scheme:

(a) One integer number v was sampled from a uniform distribution

in the [1,19] interval: v corresponded to the number of volume
units, indexed with the factor they referred to, provided by the
first parent. The remaining w units (with w = 20 − v) were pro-
vided by the second parent. The combination of these v + w
units corresponded to the first child created with crossover.
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Fig. 9. Representation of every factor in the population of 336 non-random points for a representative replicate of experiment 3 with Evo-DoE (a) and GA (b). The representation
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synergistic systems defined on large, high-dimensional experi-
mental spaces, more sophisticated optimization techniques are
required. The project must be viewed with a holistic mindset. There
should be a lively discussion of the interrelationships among
f a factor can vary from 0 (in all points the level is equal to 0) to 336 (in all points
ighest Gaussian; with circles for the factors relevant to the Gaussian with height

or all other (neutral) factors. If a factor is relevant for more than one Gaussian, its ti
eries of factor 2, relevant both for the Gaussian with height 8, and for that with he

b) The remaining units in the two parents corresponded to the
second child.

The parent selection scheme assured that all children were dif-
erent from their parents and different from each other.

. Results and discussion

The simulations were stopped at the generation at which the
est point, corresponding to the mean of the highest Gaussian,
as found. Every experiment was repeated 10 times. To evalu-

te the behavior of the two evolutionary experimental strategies
e used two different performance measures. The first consists in

he computation of the maximum response reached on average in
he different replicates, after testing a given number of points. We
an interpret this measure as the expected value of the maximum
esponse, for a given level of experimental effort. Analogously, the
econd measure calculates the expected value of the mean response
s a function of the number of observed points. Both measures are
alculated at every generation on all observed points and not only
n those observed at the current generation.

The results of the first set of experiments show that both strate-
ies optimize the response surface very quickly, considering the
astness of the experimental space (Fig. 8). The exploration oper-
ted by the Evo-DoE approach, however, is significantly more
fficient, for any level of experimental effort. After only one gen-
ration the maximum response determined by Evo-DoE reaches a
evel of roughly 4.5, which implies that the strategy has already
ound the highest Gaussian and has selected points that are located
n the neighborhood of its center (by construction, no combina-
ion that does not belong to the counter-image of this Gaussian can
ave a response higher than 3). To reach the same level of max-

mum response, the GA requires an experimental effort roughly
times larger (note that in the second generation the maximum

esponse is almost unvaried and close to 0). Evo-DoE identifies
he best combination within 8 generations (corresponding to 3072
bservations), as opposed to 18 required by the GA (6012 obser-
ations). The dynamics of the mean response is, as expected, well
orrelated with that of the maximum response.

The relative performances of the two algorithms are qualita-
ively confirmed in the two other experiments. However, it is

articularly interesting to note that the GA is affected much more
ignificantly by the increase in the complexity level of the problem,
ompared to Evo-DoE. The optimization of the response surface
omposed by the 2-, 3- and 5-dimensional Gaussians (experi-
ent 2) by the GA requires 35 generations (corresponding to
vel is >0). The time series are shown: with diamonds for the factors relevant to the
h triangles for the factors relevant for the Gaussian with height 1; with a grey line
ries is shown with the type of line associated to the highest Gaussian. E.g., the time
, is shown with a diamond-point line.

13,440 observations), as opposed to 10 required by Evo-DoE (3840
observations). As for the response surface composed by the 10-
dimensional Gaussians (experiment 3), the necessary experimental
effort increases to 64 generations (corresponding to 24,576 obser-
vations) for the GA and only 11 for Evo-DoE (4224).

Fig. 9 allows us to visualize approximately the path followed by
the two algorithms in the exploration of the experimental space, up
to the selection of the best combination. The figure shows, for every
generation and for each of the 100 factors, the time series of the
number of combinations that contain such factors at a level greater
than zero, for a representative replicate of experiment 3. The 48
random points are excluded from this calculation in order to isolate
the behavior of the only “intelligent” components of the strategies
(ANN/parent selection, crossover and mutation). The path followed
by the GA shows rather gradual changes of direction, with relatively
small differences in the population of points between successive
generations. The path followed by Evo-DoE, on the other hand,
changes direction much more rapidly, suggesting that the topol-
ogy of the response surface predicted by the ANNs tends to vary
substantially from one generation to another (at least in terms of
where the best decile of hill-climbed points is located).

Fig. 9(a) shows that the Evo-DoE has identified the six most
important of the ten participating factors by generation 6, and the
additional four appear by generation 9. The GA (Fig. 9(b)) had iden-
tified only three by generation 6, three more by generation 14,
and the next four by generation 35. It must also be emphasized
that the GA erroneously selects points with positive levels in the
non-relevant factors5 much more frequently than Evo-DoE.

4. Conclusion

Understanding the structure of the experimental space is criti-
cal to the planning process of a high-throughput experiment. Only
when the experimental space is small enough to search exhaus-
tively, or when interactions among system components are weak
enough that the space can be simplified, are traditional DoE meth-
ods an appropriate optimization tool. In the presence of complex,
5 Note that, since this is a mixture system, allocating positive levels to non-
relevant factors constrains exploration of the relevant ones.
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The factor space (defined as all possible combinations of the con-
trollable factors, with constraints included);
The response surface (the anticipated degrees of interaction or
irregularity);
The understanding of the underlying chemistry and physics and;
The high-throughput experimental system (its capacity and lim-
itations).

Only when all these have been considered (and reconsidered
s the experiment progresses) should the tactical elements be
ddressed. The tactics also should be considered as part of an itera-
ive strategy. This is an update of classical DoE thinking, as in Box’s
amous dictum to limit the first experiment to no more than 25% of
he planned effort [41].

Tactical designs such as sphere packing will serve as tools, but
volutionary strategies are required to find optima in truly com-
lex systems. Stochastic methods such as GAs are effective, but
e have demonstrated in our simulations that incorporation of
onlinear modeling and predictive power (Evo-DoE) can enhance
he efficiency with which the global system optimum is success-
ully detected and climbed. In a live experimental context, one may
ever be sure of reaching a global maximum of the response with-
ut exhaustive sampling of the experimental space, but Evo-DoE is
he most effective available strategy for finding a good result with
given experimental budget.
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