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Abstract 

Building variant ribosomes offers opportunities to reveal fundamental principles underlying 

ribosome biogenesis and to make ribosomes with altered properties. However, cell viability limits 

mutations that can be made to the ribosome. To address this limitation, the in vitro 

integrated synthesis, assembly and translation (iSAT) method for ribosome construction from the 

bottom up was recently developed. Unfortunately, iSAT is complex, costly, and laborious to 

researchers, partially due to the high cost of reaction buffer containing over 20 components. In 

this study, we develop iSAT in E. coli BL21Rosetta2 cell lysates, a commonly used bacterial strain, 

with a cost-effective poly-sugar and nucleotides monophosphate-based metabolic scheme. We 

achieved a ten-fold increase in protein yield over our base case with an evolutionary design of 

experiments approach, screening over 490 reaction conditions to optimize the reaction buffer. 

The computationally-guided, cell-free, high-throughput technology presented here augments the 

way we approach multi-component synthetic biology projects and efforts to repurpose ribosomes.

Keywords

synthetic biology, systems biology, metabolism, ribosomes, in vitro, iSAT, evolutionary design of 

experiments, machine learning
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The bacterial ribosome is a macromolecular machine evolutionarily optimized for the 

template-guided, sequence-defined polymerization of amino acids into proteins. By building 

ribosomes, synthetic biology efforts seek to elucidate a new understanding of the science of 

protein synthesis through creation – in the sense of Feynman’s dictum, “What I cannot create, I 

do not understand.” These efforts aim to reveal fundamental principles that underlie the operation 

and assembly of the ribosome complex and translation 1-3, design and build minimal cells to 

understand the origins of life 4-5, and enable evolution to select for ribosomes that have enhanced 

functions, such as altered chemical and functional properties 6-8. However, manipulation of 

ribosomes in bacteria is often limited by cell viability constraints. In vitro assembly, or 

reconstruction of E. coli ribosomes from purified native ribosomal components into functionally 

active 30S and 50S ribosomal subunits, is a promising alternative to study the ribosome 9-11. Until 

recently, however, in vitro assembly of E. coli ribosomes has been limited because conventional 

ribosome reconstitutions are non-physiological, and ribosomes reconstituted with in vitro 

transcribed ribosomal RNA (rRNA) are essentially non-functional12-13.

To address the limitation, our lab has developed over the course of the last several years, 

the in vitro integrated synthesis, assembly and translation (iSAT) method for ribosome 

construction 14-17. In a single reaction, the iSAT method constructs ribosomes in a cell-free, 

ribosome-free (S150) extract by transcribing DNA encoding ribosomal RNA (rRNA), and then 

processing and assembling transcribed rRNA and ribosomal proteins (r-proteins) into ribosomes 

that translate reporter proteins. Recent work on iSAT has dramatically improved the platform by 

optimizing extract preparation methods 16, tuning rRNA transcription 15, identifying and alleviating 

substrate limitations 17, and using macromolecular crowding and reducing agents 14. 

The iSAT system is a unique platform, which could be potentially used for bottom-up 

construction of minimal cells 5, 18-19. In this context, we recently demonstrated the ability to build 

functionally active ribosomes using iSAT in giant liposomes. The liposomes were prepared using 
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double emulsion template, and compartmentalized in vitro protein synthesis was analyzed using 

spinning disk confocal microscopy 20. This was the first time that a cell-free transcription and 

translation system where the DNA molecule encoding the formation of ribosomes has been 

encapsulated in a model cell-like compartment, i.e. liposome. While this was an important step 

towards the construction of minimal cells, iSAT is still complex, costly and laborious to 

researchers, partially due to the high cost of reaction buffer containing over 20 components. To 

make the system more accessible, we hypothesized that the price per reaction could be 

decreased by using different chassis for lysate preparation with different energy regeneration 

metabolisms, yet it is unclear if metabolic enzymes present in the S150 extracts used for iSAT 

are sufficient to support ribosome synthesis, assembly and translation.  

Historically, cell-free systems have been complex and expensive molecular mixtures, 

owing to many different chemicals and high-energy phosphate compounds that drive energy 

regeneration21-24. Glucose, PEP, pyruvate, 3-PGA, cellulose, etc. have all been evaluated for 

CFPS with some promising results. Recently, a high yielding, cost-effective metabolic scheme 

25-26 was developed in lysates made from E. coli BL21Rosetta2, a common in vivo production 

strain, which could potential bring the cost of iSAT down. However, the traditional iSAT system 

has been developed with E. coli MRE600, a common strain for ribosome study 16, due to its low 

RNase I activity. We wondered if we could activate iSAT with a simplified and cost-effective 

energy metabolism in lysates from the E. coli BL21Rosetta2, a B strain phylogenetically divergent 

from MRE60027. 

We therefore set out to: (1) develop the iSAT system in E. coli BL21Rosetta2 cell lysates, 

a more commonly used bacterial strain, (2) create a simplified and cost-effective, poly-sugar and 

nucleotides monophosphate-based metabolic scheme that fuels iSAT, and (3) optimize the 

reaction buffer for cell-free protein synthesis in these lysates through high-throughput, 

combinatorial optimization over the 20 experimental components described in Table 1.  While the 

“upstream processes” of cell-free extracts such as strain selection, cell growth, and lysis 
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6

conditions are key parameters impacting transcription and translation capabilities, we chose to 

limit the scope of this study to the “downstream processes”, the physiochemical conditions of the 

in vitro reactions. We did this because a key challenge is that finding an effective experimental 

design for the optimization of a 20-dimensional experimental space is hard. Conventional 

approaches to the design-of-experiments problem typically aim at reducing the number of 

experimental parameters (i.e., components) to explore, in order to make the exhaustive search of 

the resulting lower-dimensional experimental space feasible. Our approach consists, instead, of 

a form of Evolutionary Design-of-Experiments (EDoE)28-32, where predictive modeling and artificial 

intelligence guide the iterative selection of small batches or “generations” of experiments to 

perform, with each generation corresponding to a different small sample of the actual full-

dimensional space (Supplementary Figure S1). This approach also allows us to make 

observations of the complex chemical interactions occurring in the cell-free system. 
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7

Table 1: The 20 components included in iSAT reaction buffer tested for E. coli BL21Rosetta2 lysates. Each of the 20 components 
are placed in one of 8 categories. Four concentrations of each component (Level 1 through 4) are represented here as varied 
concentration. These are used to change each component individually in the experimental setup. The pivots of all generations are also 
shown. The concentration of each component for a given pivot is listed in each generation’s column. These values are fixed for 19 
components with the remaining component being varied at the specified varied concentrations.

Component
Pivot Generation

1.1 1.2 2 3 4 5 6 7

AMP 1.3 1.3 0 0.65 0 0 0 0
UMP 0.82 0.41 4.59 0.82 0.82 0.41 0 4.59
CMP 0.82 4.59 0.41 0.82 0.41 0 0 0.82
GTP 1.43 0.72 8.03 8.03 8.03 8.03 8.03 8.03

Acetyl-Phoshate 0.32 0 0.16 0.16 0.32 0.32 0.32 0.16
K2HPO4/KH2PO4 4.82 4.82 4.82 2.41 4.82 2.41 2.41 0

Maltodextrin 2.53 42.56 29.8 29.8 44.16 44.16 29.8 16.26
3-PGA/PEP 1:1.7 12.48 0 69.87 69.87 69.87 0 0 0

Folinic.Acid 29.59 165.71 14.8 29.59 29.59 0 14.8 14.8
Putrescine 1.85 0 0.92 0.92 1.85 1.85 0 0
Spermidine 1.28 7.14 1.28 7.14 1.28 1.28 0 0

K.Glu 8.93 250 0 200 14.46 14.46 14.46 0
K-OX 2.55 1.28 2.55 1.28 0 0 0 0

Mg-Glu 6.56 36.72 3.28 6.56 6.56 3.28 6.56 0
tRNA 164.03 0 82.02 164.03 0 164.03 0 0

Amino acids 2.08 11.64 1.04 1.04 2.08 1.04 0 0
cAMP 0.66 3.7 3.7 0.33 0.66 0.66 0 0
CoA 0.25 1.41 0.13 0.25 0 0 0.13 0
NAD 0.32 0 0.16 0 1.79 1.79 1.79 1.79
DTBA 1.93 10.8 1.93 1.93 0 0.96 10.8 1.93

Category Component Unit
Varied Concentration

Level 1 Level 2 Level 3 Level 4

1 Phosphate donor AMP mM 0 0.65 1.3 7.3
2 Phosphate donor UMP mM 0 0.41 0.82 4.59
3 Phosphate donor CMP mM 0 0.41 0.82 4.59
4 Phosphate donor GTP mM 0 0.72 1.43 8.03
5 Phosphate donor Acetyl-phosphate mM 0 0.16 0.32 1.79
6 Phosphate donor K2HPO4/KH2PO4 mM 0 2.41 4.82 27.02
7 iP recycling Maltodextrin mM 0 16.26 29.8 44.16
8 Energy Source 3-PGA/PEP 1:1.7 mM 0 6.24 12.48 69.87
9 Cytomim Folinic Acid µg/mL 0 14.8 29.59 165.71

10 Cytomim Putrescine mM 0 0.92 1.85 10.34
11 Cytomim Spermidine mM 0 0.64 1.28 7.14
12 Salt K-Glu mM 0 14.46 200 250
13 Salt K-OX mM 0 1.28 2.55 14.29
14 Salt Mg-Glu mM 0 3.28 6.56 36.72
15 Translation tRNA µg/mL 0 82.02 164.03 918.57
16 Translation Amino acids mM 0 1.04 2.08 11.64
17 Cofactor cAMP mM 0 0.33 0.66 3.7
18 Cofactor CoA mM 0 0.13 0.25 1.41
19 Cofactor NAD mM 0 0.16 0.32 1.79
20 Reducing agent DTBA mM 0 0.96 1.93 10.80
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8

In this work, we use EDoE to optimally implement a complex metabolic scheme to fuel the 

iSAT molecular interactions (Figure 1). The experimental design is based on a library of small 

molecules used to revitalize endogenous enzymes already present in the S150 cytoplasmic 

extract 16 which includes a new poly-sugar metabolic scheme. The new metabolic scheme was 

designed taking inspiration from an efficient and cost-effective poly-sugar based metabolism for 

ATP-regeneration 25-26, 33, and nucleotides triphosphate regeneration 34. The molecular 

composition of this novel metabolic scheme has not been described before. We exploited the 

power of liquid-handling robotics to build cell-free iSAT reactions, which can then be tested for 

reporter protein translation and optimized via EDoE. With this powerful approach, we could 

overcome a barrier of complexity given by the many molecular component interactions involved 

in the ribosome assembly and protein synthesis in vitro, which simplifies reaction set-up. We 

achieved a ten-fold increase of protein yield of our base case with our EDoE approach. The 

computationally-guided, cell-free, high-throughput technology presented here alters the way we 

can approach complex, multi-component synthetic biology projects, providing a path forward for 

improving cell-free efforts in: in vitro ribosome engineering 35, minimal cell synthesis 18, quorum 

sensing 36, gene circuits optimization 37, metabolic engineering 38-39, biocatalyst discovery 40, 

directed evolution 41, glycosylation42, non-standard amino acid incorporation 43-44, and human 

protein synthesis 45.    
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Figure 1: Overview schematic of iterative Design-Build-Test platform for complex 
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Results

The goal for this work was to develop a robust, cost-efficient iSAT system by studying the 

interactions of molecular components present in during iSAT reactions. Specifically, we wanted 

to develop iSAT in lysates from the commonly-used E. coli BL21Rosetta2 strain with a poly-sugar 

substrate, taking advantage of nucleotide recycling. To achieve this goal, we used an evolutionary 

design of experiments (EDoE) approach, and liquid- handling robotics, to efficiently explore the 

interactions between each of the iSAT system components and carry out several rounds of 

optimization. This allowed us to develop and improve iSAT in BL21Rosetta2 cell lysates with a 

cost-efficient energy metabolism.

Design of the experimental space

We wanted to develop a poly-sugar metabolic scheme with the iSAT system in E. coli BL21 

Rosetta2 cell lysates to make iSAT simpler and cost-effective. This metabolic scheme was chosen 

in order to activate complex cell-free metabolism and has been shown to work in other cell-free 

systems 46. This scheme consists of the synthesis of nucleotides triphosphates from nucleotide 

monophosphates coupled to glycolysis activation upon hydrolysis of maltodextrin from inorganic 

phosphate, which is the byproduct of cell-free protein synthesis 25-26. This design bypasses an 

energy re-generation system using substrate level phosphorylation, which is important to reduce 

the overall cost of the cell-free reaction 26, but also in the design and integration of the sub-

systems of minimal cells (i.e., container, information, and metabolism), an important related 

research area 18. 

To activate such a metabolic scheme, we investigated 20 potentially beneficial small 

molecules. We chose to create a design space that covered these 20 components subdivided 

into 8 categories, each one with a specific function needed for ribosome assembly and protein 

synthesis (Table 1). The first group of components is the phosphate donor category, which 
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11

contains the molecules that upon hydrolysis release inorganic phosphate (iP) in the reaction 

environment. To follow, maltodextrin is considered the iP recycling element, incorporating the 

phosphate in glucose-1-phosphate, and activates glycolytic pathways in vitro for ATP synthesis 

and regeneration18, 25-26. A mixture of 3-PGA and PEP was investigated as the energy source for 

ATP synthesis 21, 47. In addition, molecules of the PANOx-SP/Cytomim energy regeneration 

systems—cytoplasmic concentrations of spermidine, putrescine, and folinic acid—were included 

in the screening process as well 23-24. While some of these components may not be required, we 

included them as they have been shown previously to be helpful. For instance, seminal in vitro 

translation from Ehrenberg and Kurland48-49 and early work from our lab23 show that putrescine is 

helpful though modest. Moreover, typical components such as: salts, co-factors and purified 

ribosomal proteins (a fixed parameter, therefore not reported in the table), necessary for enzyme 

functionalities and ribosome assembly 50-51, along with tRNA and amino acids important for 

translation and in vitro protein synthesis were included. Besides, the reducing agent DTBA that 

was recently demonstrated to be important for the iSAT system 15, 21, 23 was comprised in the 

mixture. 

While the concentration of each component can in theory be varied continuously, the 

resulting experimental space would be impossible to access. We therefore decided to define the 

experimental space with each component varied across 4 concentration levels: low, medium-low, 

medium-high and high (Table 1). This yields an experimental space with a total of 420 (~1.1*1012) 

possible experiments, which is orders of magnitude above what is possible to be executed 

exhaustively. Thus, our experimental exploration focused on 8 small subsets of this design space, 

each defined by a collection of experiments located in the neighborhood of a different “pivot” 

experiment in the space (Table 1). This neighborhood is defined by all experiments obtained 

varying one component on the four concentration levels (Table 1), while keeping all of the other 

components constant at the same concentration level as in the pivot, as imposed by our robotic 

configuration. We started with two exploratory generations (generations 1.1 and 1.2) where the 
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12

pivots were manually chosen. EDoE subsequently estimated a predictive model on all 

experimental results and exploited this model to select the pivot for the following generation; this 

process was iterated five more times, for a total of eight generations (Figure 1). Note that we are 

using the term “generation” to refer to a batch of experiments whose results will be used to update 

the evolutionary model.  This usage is consistent with evolutionary machine learning and should 

not be confused with other notions of biological (or chemical) generations. 

Improving iSAT protein yield through iterated EDoE

Over the course of seven generations of experiments we established iSAT in E. coli BL21 

Rosetta2 cell lysates, implemented a novel metabolic scheme, and improved protein yield 10-fold 

from the base case. To initially populate our EDoE dataset, medium-high and high concentration 

levels of components dominate the pivots of generations 1.1 and 1.2 (Table 1). Higher 

concentrations were selected in part because traditional iSAT in E. coli MRE600 uses similar 

concentrations. However, such molecular component configurations resulted in low response 

values (Figure 2; Supplementary Figure S2) in the BL21Rosetta2-based system.  

0.0

0.2

0.4

0.6

0.8

1.0

[s
fG

FP
](

µM
)

Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7

Figure 2: Response distribution of each generation of experiments. Response is defined as 
the fluorescence signal from sfGFP present, converted into a µM scale. The x-axis represents 
each unique experiment. The responses of generations 1.1 and 1.2 are displayed here as a single 
“Generation 1” distribution. The mean response for each experiment is plotted in grey based on 
two independent replicates. The response from the individual replicates are plotted as dark blue 
and light blue dots for each experiment.  The right axis of each generation has a red square to 
indicate the 90% quantile level for that distribution.  
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With the EDoE approach, we observed an overall increase in response in the subsequent 

generations, with the most substantial boosts obtained in generations 4–7. Indeed, the 

synthesized sfGFP from our iSAT system increased from ~0.1 µM in generations 1.1-1.2 to ~1 

µM in the last generation (Figure 2; Supplementary Figure S2). The increased protein yields 

resulted from variation of the metabolic scheme, given by the concentration levels of the 

components in the pivots, and their neighborhoods, in different generations. The pivots showed 

a progressive convergence toward low or zero concentration levels in later generations. Overall, 

this indicates that several of the components used to design the initial pivots for high-throughput 

screening can be omitted, therefore providing a simplified mixture for energizing in vitro protein 

synthesis using in situ self-assembled ribosomes. However, two molecular components, GTP and 

NAD, converge to consistently high values in generation 4 and beyond. In particular, GTP is 

important for the translation process 52 and NAD is a cofactor in glycolysis and metabolism 53. All 

data generated is provided in Supplementary Table S2.

Dependence of response on individual components 

We next developed an intuition about the most crucial small molecules for iSAT in 

BL21Rosetta2 cell lysates by investigating the impact that different concentration levels of 

individual components had on the experimental response, as measured in the 480 experiments 

that made up all generations (Figure 3). An important observation is that certain molecules 

appear to have a neutral or negative effect on the response at any concentration, and their 

omission may therefore be actually beneficial for the system. This was not intuitive a priori based 

on previous literature of similar systems. In particular, it seems that nucleotide monophosphates 

can be omitted from the reaction mixture when the nucleotide triphosphate, GTP, is present at 

high quantities. Sufficient quantities of total nucleotide phosphates must be present to sustain in 

vitro transcription (Supplementary Figure S3) and in turn protein production. Keeping an 
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adequate total pool of nucleotide phosphates to generate initiate RNA polymerization and 

chemical energy (ATP) to sustain in vitro protein synthesis with the iSAT system in BL21Rosetta2 

cell lysates is essential. In addition, GTP can be considered an essential high-energy molecule 

extremely relevant for the metabolic scheme presented herein. This molecule is important for 

translation and in the regeneration of nucleotides triphosphates54. 

Phosphate donor molecules, such as acetyl-phosphate also appeared to be an important 

component to increase response. Indeed, higher protein yields were observed with 0.32 mM 

acetyl-phosphate as compared to 0 mM. Acetyl-phosphate is important as high-energy phosphate 

donor for ATP and GTP-regeneration systems 21, 54 and has been shown to be useful for efficient 

NTPs and dNTPs regeneration in E. coli lysates 55. Conversely, increasing the concentration of 

the phosphate buffer K2HPO4/KH2PO4 resulted in a gradual decrease in response. Indeed, if 

inorganic phosphate is accumulated at high concentration in the cell-free reaction, it inhibits the 

cell-free reaction, mainly by sequestering magnesium that is necessary for protein biosynthesis 

56. However, a low concentration is slightly beneficial. The inorganic phosphate would trigger the 

hydrolysis of maltodextrin to activate the glycolytic pathway in the crude extract 26. Interestingly, 

as the system does not need expensive molecules such as 3PGA and PEP to re-generate ATP, 

we could conclude that it is energized mainly by the ATP produced through the glycolytic pathway 

using the polysaccharide (maltodextrin) as the carbon source, in addition to GTP and acetyl-

phosphate high-energy phosphate donor molecules. 
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Figure 3: Dependence of iSAT response on individual experimental components. Each of 
the 20 components tested in iSAT is plotted in a separate graph. The x-axis represents 
concentration levels and the y-axis the corresponding conditional response distributions. Results 
are aggregated over the experiments performed in all generations.
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Concerning polyamines, i.e. putrescine and spermidine, we observed a general and 

gradual decrease in the sfGFP synthesis at increasing concentrations. The same trend was 

observed for folinic acid, which is a molecular component used in the design of the reaction buffer 

of cell-free expression systems based on 3-PGA 25-26. The response shows a somewhat non-

linear dependence on K-glutamate, with higher response at 0 mM or at 14 mM. The dependence 

of the response on Mg-glutamate is instead more linear, with a decline of the response 

proportional to the increase in Mg-glutamate in the system. Magnesium salts are important for 

ribosome stability in E. coli cell-free expression system 57, as well as enzymes functionalities, and 

their concentration must be tuned to an optimal value to avoid detrimental effects on the system 

58. It should be mentioned that putrescine, spermidine, K-glutamate, and Mg-glutamate are 

components already included in the system during crude extract preparation, and therefore 

present in the S150 cell extract (see material and methods). This could explain higher response 

values when such components are not in the chemical mixture making the reaction buffer for 

protein synthesis. Moreover, it also appears that the omission of K-oxalate from the reaction buffer 

can result in higher system response. Normally, this salt is important to inhibit the reverse reaction 

of the phosphoenolpyruvate synthase with PEP or 3-PGA used as high-energy phosphate 

molecule donor 21, 59. Therefore, this finding suggests that the S150 system can by-pass the 

substrate level phosphorylation for ATP regeneration. 

An overarching design principle that emerged was that components involved directly in 

the translation of proteins need to be finely-tuned. For instance, the response tends to be quite 

sensitive to differences in the concentration of tRNA. This molecule is already present in the crude 

extract after preparation and already charged with its correspondent amino acid. Furthermore, the 

response decreases with higher amino acids concentrations. cAMP and CoA show a similar trend. 

However, at its highest concentration (1.79 mM), NAD boosted protein synthesis and therefore 

appears to be an essential component for the iSAT system. NAD is an important cofactor involved 

in glycolysis and in turn the maltodextrin-based metabolism to energize in vitro protein synthesis. 
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The reducing agent, DTBA, has been recently demonstrated important in the optimization of the 

iSAT system 14. We observed that the addition at low concentration is also beneficial for the 

efficiency of the system presented here.  

Composition of iSAT reaction conditions achieving highest protein 

expression and their kinetic profiles 

The composition of iSAT reaction conditions achieving highest protein expression is 

shown in Table 2. These conditions show similar features. In particular, they are characterized 

by: AMP, K-OX, and CoA at 0 mM (with the exception of 1 experiment with CoA at 0.13 mM); 

GTP at 8 mM; NAD at 1.79 mM; Acetyl-phosphate at 0.32 mM (with the exception of 2 

experiments at 0.16 mM); K-Glu at 14.46 mM (with the exception of one experiment at 200 mM). 

The analysis of these reactions highlights the importance of GTP, Acetyl-phosphate, NAD, UMP 

and maltodextrin as molecular framework fueling the iSAT system prepared from E. coli 

BL21Rosetta2. 

Page 17 of 36

ACS Paragon Plus Environment

ACS Synthetic Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

Table 2: iSAT reaction conditions achieving top 9 highest protein expression mean 
response. The mean response values are obtained by averaging out the twenty repeats within 
each of the two plates and then averaging out the two within-plate means; between-plate 
response standard deviation, calculated over the two within-plate means.

Pivot Generation 7 5 5 4 7 6 5 4 4

Mean Response (RFU) 2594.5 2510 2373 2366 2358.5 2355 2341 2338.5 2322

% Noise 0.11 0.03 0.06 0.14 0.11 0.16 0.05 0.06 0.01

AMP 0 0 0 0 0 0 0 0 0
UMP 4.59 0.41 0.41 0.82 4.59 0 0.41 0.82 0.82
CMP 0.82 0 0 0.41 0.82 0 0 0.41 0.41
GTP 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03

Ac.phos 0.16 0.32 0.32 0.32 0.16 0.32 0.32 0.32 0.32
K2HPO4/KH2PO4 0 2.41 2.41 4.82 0 2.41 2.41 4.82 4.82

Maltodextrin 16.26 0 16.26 44.16 16.26 16.26 44.16 44.16 44.16
3-PGA:PEP1:1.7 0 0 0 69.87 0 0 0 6.24 0

Folinic.Acid 14.8 0 0 29.59 14.8 14.8 0 29.59 29.59
Putrescine 0 1.85 1.85 1.85 0 0 1.85 1.85 1.85

Spermidine. 0 1.28 1.28 0 0 0 1.28 1.28 1.28
K.Glu 14.46 14.46 14.46 14.46 200 14.46 14.46 14.46 14.46
K.OX 0 0 0 0 0 0 0 0 0

Mg-Glu 0 3.28 3.28 6.56 0 6.56 3.28 6.56 6.56
tRNA 0 164.03 164.03 0 0 0 164.03 0 0

Amino acids 0 1.04 1.04 2.08 0 0 1.04 2.08 2.08
cAMP 0 0.66 0.66 0.66 0 0 0.66 0.66 0.66
CoA 0 0 0 0 0 0.13 0 0 0
NAD 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79
DTBA 1.93 0.96 0.96 0 1.93 10.8 10.8 0 0

In addition, we performed a kinetic analysis to observe potential, subtle differences 

between our top 9 experiments (Figure 4). From the protein time-courses, we observed a window 

between 5 and 10 hours where iSAT reactions show different rates. Most likely, these rates 

depend on the ability to regenerate chemical energy to sustain RNA transcription, ribosome self-

assembly, and translation. We suspect that the energy regeneration scheme is a major player 

here because in each condition with maltodextrin metabolism present (all except Top 2) we 

observe translation rates that plateau before increasing again during that 5- to 10-hour window. 

This observed plateau or lag-phase was not observed using the traditional iSAT system design14-

16. Potentially, the maltodextrin-based metabolic scheme and slow energy release could also 

cause the difference in rate from traditional iSAT systems prepared with MRE600. The sharpest 
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protein production increases after this lag-phase appear in Top 1, Top 5, and Top 6 experiments 

which have no added amino acids or cAMP. Besides these observations there few obvious trends 

from the physiochemical environment that explain these kinetic differences. Further studies that 

connect RNA transcription, ribosome self-assembly, and translation could clarify how 

physiochemical conditions affect the kinetics iSAT.
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Figure 4: Kinetics of iSAT reactions achieving top 9 highest protein expression mean 
response. (A) Mean measurements of sfGFP reporter protein (µM) collected at 30-min intervals 
for each of the top 9 experiments in duplicate found with EDoE. (B) Each of the top 9 experiments 
are individually plotted to show variability between replicate reactions (two independent reactions 
performed).

Variation of magnesium and DNA templates concentrations 

A magnesium optimization of S150 extracts for reporter protein synthesis activity in iSAT 

reactions is vital for in vitro transcription/translation16. Therefore, following the computationally-

guided EDoE optimizations, we decided to carry out an additional magnesium optimization to 

improve activity. We focused on optimizing buffer conditions that resulted in the top 4 protein 

synthesis yields (Figure 4). In addition to magnesium, we explored the effects of changing DNA 

concentration, since DNA concentrations used in our high-throughput experimentation was 2nM 

and previous efforts showed that increasing DNA concentration might yield enhanced iSAT 
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activity14-16. For each of the top 4 experiments, we explored the effects of modifying the 

magnesium glutamate and plasmid DNA concentrations to see if iSAT activity could be improved 

in the context of the new metabolic scheme (Supplementary Figure S4). To optimize these two 

parameters, a lattice experimental design was carried out. Based on the need for greater rRNA 

transcription, pT7rrnB (plasmid DNA) concentration was varied with 2, 4, 8 and 10 nM of DNA. 

Magnesium glutamate concentration was altered by testing a range of concentrations: 0, 2, 3.3, 

4, 5, 6, 6.6, 8 and 9 mM. Standard 15 µL batch reactions were prepared by hand and performed 

at 37 °C for 20 hours, with varying magnesium glutamate concentrations for each reaction. 

Collectively, these experiments allowed us to map component landscapes to explore global and 

local optima. Global optima for magnesium glutamate and DNA concentrations for each iSAT 

conditions were determined. The optimum concentration of DNA was as follows: for top 

experiment 1 the optimum was 2 nM, for top experiment 2 the optimum was 2 nM, for top 

experiment 3 the optimum was 8-10 nM and for top experiment 4 the optimum was 2 nM. For all 

experiments, the original magnesium glutamate concentration from each of the top 4 experiments 

was used. Taken together, our results show that the cell-free framework and its barrier-free 

access to reaction conditions is well-suited for rapidly acquiring physiochemical landscapes to 

assess and optimize pathway performance. This joins an emerging body of literature highlighting 

the value of cell-free systems for prototyping biological systems60-61.

High-dimensional inter-component synergy

With all of our experimental data at hand, we set out to understand components having 

the largest impact of iSAT activity. This is important because it teaches us which components 

might synergistically work together to enable high activity. Figure 5 tackles this analysis from a 

regression modeling perspective by showing the structure of a conditional inference tree, trained 

on all experimental data collected through generation 7 of the data. The tree, estimated via the 
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ctree function in the R package partykit, represents a partition of the experimental space into 

regions with homogeneous experimental response. Each path from the root node to a given leaf 

node represents a different sequence of recursive bisections of the experimental space. Each 

bisection is defined by a specific experimental component (shown in ovals), selected to maximize 

the statistical association between a candidate component and the experimental response. The 

specific concentration of this component to maximize this association is shown on the two 

outgoing arcs. This concentration is selected to maximize the standardized difference between 

the response means in the two resulting data subsamples. Each leaf node represents a different 

region of the experimental space (shown in boxes) and contains a box plot of the response 

distribution of the experiments belonging to that region. From this tree analysis, we find that the 

highest-response experiments are, on average, mainly contained in nodes 15 and 16. This region 

is defined by the presence of five components: GTP, NAD, K-Ox, 3-PGA-PEP, and Maltodextrin. 

Thus, these components represent “key components” with “key concentrations” in specific 

intervals to improve iSAT performance. 
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Figure 5: Conditional inference regression tree, trained on all experimental data. Terminal 
nodes show the box plots of the experimental response, conditioned on the experimental region 
defined by specific experimental components at specific concentrations; regions containing high-
response experiments are defined by at least 4/5 experimental components.

Further insight into the impact of these key components and key concentrations on 

experimental response can be found in Supplementary Figure S5. This figure shows 

experimental response distributions conditioned on the number of key components at key 

concentrations in an experiment and illustrates how a substantial boost in experimental response 

is obtained only when several of these conditions are satisfied simultaneously. The average 

response, for example, fluctuates around 0.10 if two or less conditions are satisfied, but 

progressively grows to 0.30, 0.49, and 0.68 as the number of satisfied conditions increases to 

three, four, and five. This indicates that these key components are synergistic, that is, they yield 

high response only by working together. Identifying which components are key for iSAT 

performance allows us to define these components as essential when trying to minimize which 

components we include in iSAT to minimize the cost of a reaction. Indeed, with this knowledge in 
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hand we were able to decrease the cost of this new iSAT reaction 4-fold from the state-of-the-art 

reaction (Supplementary Figure S6).    

Discussion

In this work, we have (i) established lysates from a common E. coli bacterial strain, 

BL21Rosetta2, as a novel platform for the iSAT system, which allows in vitro study of ribosome 

assembly and function of a new bacterial strain, (ii) integrated a novel simplified metabolic scheme 

for iSAT that exploits maltodextrin as non-phosphorylated energy source, and (iii) implemented 

nucleotides triphosphate regeneration for in vitro transcription. This is an important point as it 

shows a metabolic scheme with energy regeneration, transcription, translation, ribosome 

construction, and components necessary for self-maintenance 5, 18, 62 – a system that could be 

integrated as a sub-system of a minimal cell. Herein, the challenges were (i) the activation of such 

a complex metabolic scheme using the iSAT system, which more than using self-assembled 

ribosomes, is also diluted three times more than conventional cell-free protein synthesis systems. 

Therefore, these results could be also important to scale-up cell free ribosome synthesis for 

medical and industrial applications 63, such as the synthesis of peptidomimetics.

In addition, we have demonstrated that our EDoE approach can be adapted to the 

technical constraints of a robotic workstation, which in this work substantially limited the 

exploration of the experimental components, unlike in previous applications of EDoE 29-30. Our 

EDoE algorithm was able to optimize the iSAT system into an E. coli strain sub-optimal for 

studying ribosome assembly, discovering complex inter-component synergies, while also 

decreasing the cost of the cell-free reaction 4-fold, i.e. from ~20 cents to 5 cents per reaction 

(Supplementary Figure S6). This approach also allowed us to identify top-performing conditions 

that we might not have tested otherwise. For example, the top-performing condition contained no 

added AMP in the reaction yet had high transcription and translation levels. It was surprising that 
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sufficient rRNA and mRNA transcription could occur. One possibility is that NMPs and NTPs still 

remain after dialysis potentially sequestered by enzymes in the cell lysates which could also 

indicate the presence of a nucleotide recycling system capable of regenerating these 

components. This observation warrants further investigation of the metabolic processes occurring 

in cell-free lysates.

Reaction optimization may be specific to which target proteins are made in the reactions. 

Because we used a single target protein, sfGFP, to test the yield of the iSAT protein synthesis 

protocol, the concentrations selected by the EDoE algorithm, albeit optimal for this particular 

protein, may be sub-optimal for other proteins. This is a form of “overfitting”, and can only be 

addressed with further experiments, using other target proteins. In addition, we believe that further 

optimization of the system should comprise the design of the DNA templates, either in the length 

and sequence of the regulatory parts and spacer sequences 30, 47, 64. Moreover, studying the 

effects of strain selection, cell growth, and lysis conditions on iSAT performance could further 

inform development of iSAT systems in the future. Looking forward, we anticipate that new cost-

effective iSAT reactions fueled by new energy regeneration schemes discovered here, could 

facilitate unraveling the systems biology of ribosome biogenesis, constructing minimal cells from 

defined components, and engineering ribosomes with new functions
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Methods

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Corresponding author, Michael Jewett (m-jewett@northwestern.edu).

Bacterial strains and plasmids

E. coli BL21Rosetta2 (NEB) was used in creating S150 cell lysates for use in all iSAT experimental 

generations. Plasmid pJL1-sfGFP was used for reporter expression, and plasmid pT7AM552A 

was used for rRNA operon expression.

S150 cell extract and component preparation

E. coli BL21Rosetta2 cells were grown in 2x YTP media (16 g l-1 tryptone, 10 g l-1 yeast extract, 5 

g l-1 NaCl, 7 g l-1 potassium phosphate monobasic, 3 g l-1 potassium phosphate dibasic). S150 

extract, E. coli 70S ribosomes, total protein of 70S ribosomes (TP70) and T7 RNA polymerase 

(RNAP) were prepared as previously reported 15. The amino acids mixtures used by the robotic 

workstation were prepared as previously described.65 A single batch of extract was used for this 

study. 

iSAT reaction setup

The typical iSAT system is composed of 22 components listed in Supplementary Table S1 with 

traditional concentrations. In the new metabolic scheme explored for E. coli BL21Rosetta2 

lysates, the iSAT reaction was composed of E. coli S150 crude extract (3.7 µg/mL), rRNA operon 

plasmid (pT7AM552A, 4.0 nM), pJL1-sfGFP (4.0 nM), T7 RNA polymerase (36 µg/mL), total 

protein of 70S ribosomes (TP70, 300 nM), and the 20 different components listed in Table 1. 

These 20 components, plus the homemade amino acids mixture, make up the reaction buffer 

necessary for fueling in vitro protein synthesis. 
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Robotic liquid-handling reaction setup and exploration of the experimental space using pivots

An Agilent BRAVO liquid-handling robot (Agilent Technologies) was used to carry out the iSAT 

reaction buffer setup. The liquid-handling workstation has nine plate decks and a 96-pipette tip 

head movable in the x-y-z directions. The workstation was programmed using VWorks™ 

Automation Control Software (BioNex Solutions, Inc.) to pipette different arrangements of 

reagents. Concentration levels for each component was made through serial dilution of stock vials 

of each of the 20 components using the liquid-handling system (both the 96ST and 96LT heads). 

Each component was diluted with 50 mM HEPES pH 7.2 buffer. After initial component dilutions 

are made, the reagents are pooled to together in 96-well flat-bottom plates. The exploration 

compatible with our robotic constraints is conducted by choosing a “pivot” experiment, and then 

performing alterations on the pivot. The alterations are defined by keeping 19 components fixed 

at the pivot concentrations (Table 2) while the concentration of the remaining component is varied 

one level at the time (the concentration levels are highlighted using a color code in Table 1). For 

example, well A1 contains all reagents except AMP, and A1 through A4 contain AMP at each of 

the four concentration levels (low, medium-low, medium-high, and high) listed in Table 1; these 

complete reaction buffers are then mixed with S150 extract, purified ribosomal proteins, DNA, etc. 

to complete the iSAT reaction mixture. The set of all single-component alterations of a pivot make 

up the pivot “neighborhood”. The pivot neighborhood is comprised of 60 different experiments, 

since each component may be varied to three alternative values besides that component’s pivot 

value. The generation of experiments determined by a particular pivot contains all the experiments 

in the pivot neighborhood, and in addition, 20 replicates of the pivot experiment, yielding 80 

experiments fitting on a 96-well plate. Reactions are run in duplicate, and sfGFP fluorescence 

was measured at 37°C in sealed 500 µL tubes (Biorad) using a real time PCR machine. 
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GFP Quantification

The kinetic data and yields of sfGFP were measured through excitation at 485 nm while 

measuring emission at 528 nm with a 510 nm cutoff filter. The fluorescence response of sfGFP 

was converted to concentration according to a standard curve as previously described66. 

RNA Quantification

iSAT reactions were performed with radioactive 3H-UTP (8 µM) supplemented in addition to the 

standard concentrations of NMPs and NTPs (determined by the condition tested). We used 

trichloroacetic acid (TCA) to precipitate radioactive iSAT samples. Radioactive counts from TCA-

precipitated samples was measured by liquid scintillation to then quantify total RNA yields as 

previously reported (MicroBeta2; PerkinElmer)67-68. 

Modeling and design of experiments

The use of modeling in the EDoE process is illustrated in Figure 1 and Supplementary Figure 

S1. A graphical interface to modeling and EDoE tools analogous to those described in 

Supplementary Figure S1 can also be found online.32 Each generation begins with the collection 

of experimental results for that generation. The experiments for the following generation are 

designed by first building a predictive model from the data for all completed generations, including 

the current one. The predictive model takes an experiment as input, and outputs a prediction for 

the experimental result expected for that experiment, i.e., a value on the modeled experimental 

response surface. The predictive model is used to explore the experimental space, through a 

process of “virtual execution” of many randomly sampled pivots, combined with hill-climbing of 

the model response surface, as described below. The trade-off between random exploration and 

hill-climbing is varied each generation as described in the detail below, but at the end of each 

generation’s exploratory process four good candidate pivots are automatically chosen, and the 

experimentalist selects between these four (on the basis of intuition combined with expert 
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knowledge). The pivot selected through this process is then used to determine the following 

generation, as described above.

The model constructed has the form of an ensemble of 25 single-hidden-layer, feed-

forward neural networks, each network initialized with different random initial weights and trained 

via the nnet package in R. Each network has 20 input nodes, corresponding to the 20 dimensions 

(components) of the experimental space, and one output node, to predict the experimental 

response given values for all inputs. Prior to training, the 20 replicates of each pivot experiment 

are collapsed into one individual data point, whose response value is the mean of the response 

value across the 20 replicates. After training, a network may be used to predict experimental 

response for an arbitrary set of inputs, i.e. for any candidate experiment. The ensemble prediction 

is obtained by taking the mean of the predictions of each of the 25 networks in the ensemble.

Predictive models must be carefully controlled by a process of regularization, to avoid 

overfitting. We regularized our network ensemble models by exploring a range of model hyper-

parameters in a bootstrapping process. The hyper-parameters explored were the number of 

hidden nodes for the networks (values 2, 5, 10, 20, 40), the value of the weight-decay term (values 

0.01, 0.05, 0.1, 0.25, 0.5, 1), and the number of iterations of the back-propagation training 

algorithm (values 100, 500, 1000, 2000). For each combination of these hyper-parameters, the 

trained network ensemble was bootstrapped via Monte-Carlo cross-validation, on 20 independent 

random partitions of the data from all experiments and measured responses up to the last 

completed generation into training and cross-validation sets (80% training / 20% validation). Each 

hyper-parameter combination was assigned a score corresponding to the mean across partitions 

of the Pearson’s correlation between predicted and observed response values in the validation 

set.

Once the hyper-parameter combination with the highest score has been selected through 

the cross-validation process, a predictive model with such hyper-parameter values is trained on 

the entire data from all experiments and measured responses up to the last completed generation. 
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Given the predictive model, any given candidate pivot may be evaluated by computing its 

predicted experimental response as well as that for each experiment in its neighborhood. The 

predicted response associated to that pivot is then taken to be the 90% quantile of the distribution 

of predicted responses for the set of experiments including the pivot and its neighborhood.

Given a predictive model built from the selected hyper-parameters, we can proceed to 

choosing good predicted experiments as candidate pivots for the next generation. These 

candidate pivots are chosen by combining random sampling with two techniques that manage the 

trade-off between random exploration and exploitation of information gathered in previous 

generations: (i) a steepest-ascent algorithm to hill-climb the predicted response surface to reach 

local maxima (ii) an algorithm to constrain experiment choice based on “experimental distance”, 

defined as the mean pairwise Euclidean distance between each experiment in the set that 

includes the candidate pivot and its neighborhood and each experiment in the set of already 

performed experiments, calculated after normalizing the range of each component to a [0, 1] 

scale. The details of the experimental choice process vary from generation to generation, based 

on the complexity of the predicted response surface, and the evaluation of experimental results 

for each generation. A summary of the experimental process for different generations follows:

 Generation 1.1-1.2:  chosen by the experimental team.

 Generation 2-3: randomly sample 250 candidate pivots, then select the four pivots with 

best predicted response among those having experimental distances falling between the 

median and the 3rd quartile of the distribution. The experimental team finally chooses one 

from these four.

 Generation 4: Run the steepest-ascent algorithm from 500 randomly sampled initial pivots; 

then randomly sample four candidate pivots from the local maxima with predicted 

response above the median of the distribution and experimental distance falling between 

the median and the 3rd quartile of the distribution. The experimental team finally chooses 

one from these four.
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 Generation 5: Run the steepest-ascent algorithm from 5000 randomly sampled initial 

pivots; randomly sample 250 pivots from the local maxima with predicted response above 

the median of the distribution, with probabilities proportional to their respective predicted 

response; then select the four candidate pivots with best predicted response among those 

having experimental distance falling between the median and the 3rd quartile of the 

distribution. The experimental team finally chooses one from these four.

 Generation 6: Run the steepest-ascent algorithm from 20000 randomly sampled initial 

pivots; randomly sample 250 pivots from the local maxima with predicted response above 

the 3rd quartile of the distribution, with probabilities proportional to their respective 

predicted response; then select the four candidate pivots with best predicted response 

among those having experimental distance falling between the 1st and the 3rd quartile of 

the distribution. The experimental team finally chooses one from these four.

 Generation 7:  Run the steepest-ascent algorithm from 80000 randomly sampled initial 

pivots; randomly select 250 pivots from the local maxima with predicted response above 

the 90% quantile of the distribution, with probabilities proportional to their respective 

predicted response; then select the four candidate pivots with best predicted response. 

The experimental team finally chooses one from these four.

There was one experiment in generation 2 that appeared to have extremely high response; 

subsequent experiments have not validated its repeatability, so that experiment has been deleted 

from this presentation of results. The data point corresponding to this severely noisy experiment 

was, however, used in the model training process, causing bias in the predictions for generation 

3. 

Supporting Information

The supporting files contains Supplementary Table S1, Supplementary Figure S1-S6, and 
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Supplementary Table S2 (.csv).
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